Subtracting a best rank-1 approximation may increase tensor rank

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 9 Subtracting a best rank - 1 approximation may increase tensor rank

It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...

متن کامل

Subtracting a best rank-1 approximation does not necessarily decrease tensor rank

It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...

متن کامل

The Best Rank-One Approximation Ratio of a Tensor Space

Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-o...

متن کامل

Low-rank Tensor Approximation

Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...

متن کامل

Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem

There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon is much more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2010

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.06.027