Subtracting a best rank-1 approximation may increase tensor rank
نویسندگان
چکیده
منابع مشابه
un 2 00 9 Subtracting a best rank - 1 approximation may increase tensor rank
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...
متن کاملSubtracting a best rank-1 approximation does not necessarily decrease tensor rank
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...
متن کاملThe Best Rank-One Approximation Ratio of a Tensor Space
Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-o...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملTensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem
There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon is much more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.06.027